Friday, March 7, 2014

Bright pulses of light could make space veggies more nutritious, says CU-Boulder study.

Exposing leafy vegetables grown during spaceflight to a few bright pulses of light daily could increase the amount of eye-protecting nutrients produced by the plants, according to a new study by researchers at the University of Colorado Boulder.
One of the concerns for astronauts during future extended spaceflights will be the onslaught of eye-damaging radiation they’ll be exposed to. But astronauts should be able to mitigate radiation-induced harm to their eyes by eating plants that contain carotenoids, especially zeaxanthin, which is known to promote eye health.
Zeaxanthin could be ingested as a supplement, but there is evidence that human bodies are better at absorbing carotenoids from whole foods, such as green leafy vegetables.
Already, NASA has been studying ways to grow fresh produce during deep space missions to maintain crew morale and improve overall nutrition. Current research into space gardening tends to focus on getting the plants to grow as large as possible as quickly as possible by providing optimal light, water and fertilizer. But the conditions that are ideal for producing biomass are not necessarily ideal for the production of many nutrients, including zeaxanthin.
“There is a trade-off,” said Barbara Demmig-Adams, professor of distinction in the Department of Ecology and Evolutionary Biology and a co-author of the study published in the journal Acta Astronautica. “When we pamper plants in the field, they produce a lot of biomass but they aren’t very nutritious. If they have to fend for themselves—if they have to defend themselves against pathogens or if there’s a little bit of physical stress in the environment—plants make defense compounds that help them survive. And those are the antioxidants that we need.”
Plants produce zeaxanthin when their leaves are absorbing more sunlight than they can use, which tends to happen when the plants are stressed. For example, a lack of water might limit the plant’s ability to use all the sunlight it’s getting for photosynthesis. To keep the excess sunlight from damaging the plant’s biochemical pathways, it produces zeaxanthin, a compound that helps safely remove excess light.
Zeaxanthin, which the human body cannot produce on its own, plays a similar protective role in our eyes.
“Our eyes are like a leaf—they are both about collecting light,” Demmig-Adams said. “We need the same protection to keep us safe from intense light.”
The CU-Boulder research team—which also included undergraduate researcher Elizabeth Lombardi, postdoctoral researcher Christopher Cohu and ecology and evolutionary biology Professor William Adams—set out to determine if they could find a way to “have the cake and eat it too” by simultaneously maximizing plant growth and zeaxanthin production.
Using the model plant species Arabidopsis, the team demonstrated that a few pulses of bright light on a daily basis spurred the plants to begin making zeaxanthin in preparation for an expected excess of sunlight. The pulses were short enough that they didn’t interfere with the otherwise optimal growing conditions, but long enough to cause accumulation of zeaxanthin.
“When they get poked a little bit with light that’s really not a problem, they get the biomechanical machine ready, and I imagine them saying, ‘Tomorrow there may be a huge blast and we don’t want to be unprepared,’ ” Demmig-Adams said.
Arabidopsis is not a crop, but past research has shown that its behavior is a good indicator of what many edible plant species will do under similar circumstances.
The idea for the study came from Lombardi, who began thinking about the challenges of growing plants during long spaceflights while working with CU-Boulder’s Exploration Habitat graduate projects team in the Department of Aerospace Engineering Sciences, which built a robotic gardening system that could be used in space.
While the study is published in an astronautics journal, Lombardi says the findings are applicable on Earth as well and could be especially relevant for future research into plant-based human nutrition and urban food production, which must maximize plant growth in small areas. The findings also highlight the potential for investigating how to prod plants to express traits that are already written in their genetic codes either more fully or less fully.
“Learning more about what plants already ‘know’ how to do and trying to manipulate them through changing their environment rather than their genes could possibly be a really fruitful area of research,” Lombardi said.
The study was funded by the National Science Foundation and CU-Boulder’s Undergraduate Research Opportunities Program.

Source: Be Boulder

Thursday, March 6, 2014

WATCH LIVE NOW: Close-Shave Asteroid 2014 EC Flies Within 38,000 Miles of Earth


The 33-foot-wide (10 meters) near-Earth asteroid 2014 EC will come within 38,000 miles (62,000 kilometers) of Earth's surface this afternoon (March 6) — just 16 percent of the distance between our planet and the moon, which is about 239,000 miles (385,000 km) on average. You can see a video of asteroid 2014 EC's orbit arount the sun here. The Virtual Telescope Project will attempt to stream live views of the asteroid today at 2:00 p.m. ET. You can watch it live in the window below. Full Story: Bus-Size Asteroid Gives Earth Super-Close Shave Today, Second in 2 Days

2014 EC, which was discovered just Tuesday (March 4), is about half as wide as the asteroid that exploded over Russia in February 2013, injuring about 1,500 people. There is no danger that 2014 EC will hit Earth on this pass, researchers stress; the chances that it will ever strike the planet are currently estimated at 1 in 2.7 million.
Asteroid 2014 DX110 flyby of Earth: March 5 
Virtual Telescope Project has captured this first video of asteroid 2014 DX110 here. We will post a wrap story later today with new images of the asteroid shortly.

At 4 p.m. EST (2100 GMT), the Slooh online observatory will webcast its own coverage of asteroid 2014 DX110 using the company's remote-controlled telescopes. Slooh's Paul Cox will host the observing event.
From NASA: "This asteroid, 2014 DX110, is estimated to be about 100 feet (30 meters) across. Its closest approach to Earth will be at about 217,000 miles (about 350,000 kilometers) from Earth at about 1 p.m. PST (4 p.m. EST) [2100 GMT] on March 5. The average distance between Earth and its moon is about 239,000 miles (385,000 kilometers)."
The asteroid 2014 DX110 will zip by Earth at 4 p.m. EST (2100 GMT) today, just days after its discovery on Feb. 28. NASA officials say it poses no threat to the Earth.

The first asteroid 2014 DX110 webcast at 3:30 p.m. EST comes courtesy of the Virtual Telescope Project overseen by astrophysicist Gianluca Masi in Ceccano, Italy. The webcast will cover the incoming asteroid's approach and closest flyby to Earth during today's space rock encounter. You can follow Masi's webcast directly at the Virtual Telescope Project website here.



Source: Space.com

NASA planning future mission to Europa.

 NASA is plotting a daring robotic mission to Jupiter's watery moon Europa, a place where astronomers speculate there might be some form of life.
The space agency set aside $15 million in its 2015 budget proposal to start planning some kind of mission to Europa. No details have been decided yet, but NASA chief financial officer Elizabeth Robinson said Tuesday that it would be launched in the mid-2020s.
Robinson said the high radiation environment around Jupiter and distance from Earth would be a challenge. When NASA sent Galileo to Jupiter in 1989, it took the spacecraft six years to get to the fifth planet from the sun.
Rensselaer Polytechnic Institute astronomer Laurie Leshin said it could be "a daring mission to an extremely compelling object in our solar system."
Past NASA probes have flown by Europa, especially Galileo, but none have concentrated on the moon, one of dozens orbiting Jupiter. Astronomers have long lobbied for a mission to Europa, but proposals would have cost billions of dollars.
Last year, scientists discovered liquid plumes of water shooting up through Europa's ice. Flying through those watery jets could make Europa cheaper to explore than just circling it or landing on the ice, said NASA Europa scientist Robert Pappalardo.
NASA will look at many competing ideas for a Europa mission, so the agency doesn't know how big or how much it will cost, Robinson said. She said a major mission goal would be searching for life in the strange liquid water under the ice-covered surface.
Harvard astronomer Avi Loeb said going to Europa would be more exciting than exploring dry Mars: "There might be fish under the ice."
 Source: Yahoo News

Sunday, March 2, 2014

What if We’ve Completely Misunderstood Our Place in the Universe?

Our universe is about 13 billion years old, and for roughly 3.5 billion of those years, life has been wriggling all over our planet. But what was going on in the universe before that time? It’s possible that there was a period shortly after the Big Bang when the entire universe was teeming with life. Harvard astronomer Avi Loeb calls this period the “habitable epoch,” and he believes that its existence changes how humans should understand our place in the cosmos.
We have one snapshot of life in the early universe, taken about 400,000 years after the Big Bang. This image is known as the Cosmic Microwave Background (CMB), and it’s what astronomers see when they aim their telescopes at the farthest edges of space, capturing light that has been traveling through the universe for billions of years—and from billions of years ago. Remember, light takes a while to reach Earth (it travels at only 186,000 miles per second), so the starlight you see in the sky at night is often thousands of years old. The CMB is a lot older than that. It’s from the time when the universe hadn’t yet developed stars.
If the CMB looks to you like a lot of glowing blobs, that’s because it is. Radio astronomers Arno Penzias and Robert Wilson won a Nobel Prize for discovering that these blobs were actually relics of warm gas spreading outward shortly after the Big Bang. Some regions of the gas appear denser than others, and these areas eventually formed stars and galaxies as the universe aged and cooled. But for millions of years, the universe was in a kind of interim state between lumpy gas and the cool, galaxy-studded darkness of today. That’s where Loeb’s habitable epoch comes in.
It was a time when the very first solid objects were forming in the universe, about 10 to 20 million years after the Big Bang. “The first objects were very small,” Loeb told me by phone from his office at Harvard. By small, he meant they didn’t approach the mass of even a moderately sized galaxy like our own Milky Way. In fact, there were no galaxies at that time—only large stars, probably embedded in dark matter. “We can do simulations of these early stars, and what people find is that they were tens to hundreds of times more massive than the Sun.” These giant stars, floating alone, easily could have had rocky worlds like Earth in orbit around them.
And that’s when things get interesting. These days when astronomers discover a planet, the news is usually accompanied by the disappointing report that it’s not in a “habitable zone,” which is to say the exact orbit required to keep water in a liquid state. If the planet is too close to its star, all the water has boiled away; if the planet is too distant, the water is frozen solid. Given that life as we know it requires water, most astronomers assume that life could only develop on a planet in its solar system’s habitable zone.
But in the early universe, as Loeb speculates in a paper published in Astrobiology late last year, everything would have been a habitable zone. 10 to 20 million years after the Big Bang, the universe was still bathed in that warm gas we saw in the CMB, but it had cooled down to a temperature that would keep water liquid no matter where it was relative to its star. The ambient temperature of the universe would provide enough heat to turn an ice giant like Neptune into a water giant. That’s why Loeb has dubbed this era the “habitable epoch.”
It would have been a weird time for life to evolve, though. Many of the building blocks of life on Earth, like carbon and metals, exist only because of the massive stellar explosions called supernovas which signal the deaths of stars. In a universe where so few stars had been born, even fewer would have died. This was a period when solid matter was an anomaly, before most of the elements on the periodic table existed.
Stars would have been few and far between. “Life might have been more isolated than it is today,” Loeb said. “Now we are members of a galaxy, with tens of billions of stars not far away.” Still, Loeb said, the rare stars and planets would form hotter, more energetic regions in the sea of warm gas. There would be energy to kick-start life forms and liquid water would slosh across the surface of planets with atmosphere. Also, the relative isolation of these worlds would have protected them from threats like cosmic radiation and asteroid bombardment—two dangers that have nearly extinguished life on Earth more than once.
Would this life have been intelligent? “No,” Loeb said. “I’m talking about very simple organisms like algae.” Because the universe was changing so quickly, species would only have about a million years to evolve on a planet before the warm gas clouds around it cooled enough to change the environment radically. Still, a million years is enough time for a single-celled creature to evolve. And another simple species, more adapted to the colder world, could evolve to take its place. But could a humanlike civilization arise in one of those evolutionary windows? The odds are slim—consider that it took roughly 65 million years for the small, fluffy mammals of the Tertiary period to evolve into modern humans.
The habitable epoch might have been a lonely, strange time to be alive. But if Loeb is right—and other physicists, such as Princeton’s Freeman Dyson, believe he is—then life may be a lot less rare than we ever imagined. “It’s almost like a Copernican Revolution in our thinking about life,” Loeb said. “Once we believed Earth was the center of the universe. Then Copernicus and others said, hey, it’s actually the Earth that’s moving around the Sun.” Suddenly, Earth wasn’t so special; we weren’t at the center of all things. Loeb is suggesting that maybe life on Earth isn’t so special, either.
“For a long time, we’ve had this preconception that life is here on Earth, but the universe is dead,” Loeb said. “But maybe we should be thinking of this as a living universe. We may be relative latecomers to the game.” If life becomes an important ingredient in the development of the cosmos, it unseats humans as the all-important observers of our universe. It suggests that many other eyes watched the skies before our sun was even lit.
For Loeb, the habitable epoch is part of a fuller understanding of our universe as a place where life might well be common. The problem is that even if life were common, it would be very hard to detect on other planets. “Suppose there’s a nuclear war elsewhere in our galaxy,” Loeb suggested. “How do you detect that with telescopes? The energy released is so small we wouldn’t even be able to see it if it happened on the nearest star.” Currently astronomers are trying to design instruments that would be able to find life on other worlds, perhaps by looking for telltale signs of molecular oxygen, which is almost always created by life forms.
But in the meantime, Loeb has one piece of advice for cosmologists. “Until proven wrong, we should assume we are not special.”
Source: Slate